Развитые технологии КМОП-структур и энергонезависимая память на их основе столкнутся с фундаментальными ограничениями уже в 2018-2020 гг. В настоящее время проводится интенсивный поиск приборов на основе новых физических принципов, которые потенциально будут иметь более высокую степень интеграции. В качестве таких приборов предлагается использовать мемристоры. Представлен обзор литературы, посвященной последним разработкам в области создания мемристорных структур, а также массивам на их основе. Детально рассмотрены материалы, технологии создания и физические принципы функционирования мемристорных структур, а также современные технологии создания массивов этих структур. Представлены три наиболее перспективные направления развития мемристоров на основе халькогенидов, оксидов металлов и твердых электролитов. Обзор будет полезен исследователям и специалистам в области создания кремниевой энергонезависимой памяти.
Литература
1. Chen A., Hutchby J., Zhirnov V., Bourianoff G. Emerging nanoelectronic devices. – Wiley, 2015. – P. 5.
2. Chua L.O. Resistance switching memories are memristors // Appl. Phys. Lett. – 2011. – Vol. 102. – No. 4. – P. 765–783.
3. Chua L.O. Memristor – the missing circuit element // IEEE Trans. Circuit Theory. – 1971. – Vol. 18. – No. 5. – P. 507–519.
4. Strukov D., Snider G., Duncan R. The missing memristor found // Nature. – 2008. – Vol. 453. – P. 80.
5. Conference papers of Flash memory summit (Santa Clara, 2015). – 2015. – URL: https://www.flashmemorysummit.com/English/Conferen/ Proceedings_Chrono.html (дата обра-щения:15.04.2017).
6. Qureshi M.K., Srinivasan V., Rivers J.A. Scalable high performance main Memory sys-tem using phase-change memory technology // ISCA’09 (Austin, Texas, USA, 2009) – P. 24–33.
7. Beneventi G.B. Characterization and modeling of phase-change memories. – LAMBERT Academic Publishing. – 2012. – P. 1–109.
8. Hudgens S., Johnson B. Overview of phase-change chalcogenide nonvolatile memory technology // MRS Bulletin. – 2004. – Vol. 29. – No. 11. – P. 829–832.
9. Scaling analysis of phase-change memory technology / A. Pirovano, A.L. Lacaita, A. Benvenuti et al. // Proc. of the IEEE Int. Electron Devices Meeting (IEDM 03). –IEEE Press, 2003. – P. 29.6.1 – 29.6.4.
10. Ultrafast synaptic events in a chalcogenide memristor / Y. Li, Y. Zhong, L. Xu et al. // Scientific Reports. – 2013. – Vol. 3. – P. 1–7.
11. Enhanced crystallization of GeTe from an Sb2Te3 template / R.E. Simpson, P. Fons, A.V. Kolobov et al. // Appl. Phys. Lett. – 2012. – Vol. 100. – P. 021.
12. Hong S.-H., Bae B.-J., Lee H. Fast switching behavior of nanoscale AgInSbTe based nanopillar type phase change memory // Nanotechnology. – 2010. – Vol. 21. – P. 025703.
13. Burr G.W., Breitwisch M J., Franceschini M., Garetto D. Phase change memory tech-nology // J. of Vacuum Science and Technology B. – 2010. – Vol. 28. – № 2. – P. 223–262.
14. Structure and electrical properties of Ge2Sb2Te5 thin film used for Ovonic Unifed Memory / T. Zhang, B. Liu, J.-L. Xia et al. // Chin. Phys. Lett. – 2004. – Vol. 21. – No. 4. – P. 741–743.
15. Metal–oxide RRAM / P. H.-S. Wong, H.-Y. Lee, S. Yu et al. // Proc. of the IEEE. – 2012. – Vol. 100. – No. 6. – P. 1951–1970.
16. Der Chang K., Tang S., Karpov I. A stackable cross point phase change memory // Electron Devices Meeting (IEDM). – 2009. – Р. 44–48.
17. Hickmott T.W. Low frequency negative resistance in thin anodic oxide films // J. of Appl. Phys. – 1962. – Vol. 33. – No. 9. – P. 2669–2682.
18. Gibbons J.F., Beadle W.E. Switching properties of thin NiO films // Solid-State Elec-tronics. – 1964. – Vol. 7. – P. 785–797.
19. Dearnaley G., Stoneham A.M., Morgan D.V. Electrical phenomena in amorphous oxide films // Rep. Prog. Phys. – 1970. – Vol. 33. – P. 1129–1191.
20. Hiroyasu Kawano, Keiji Shono, Manabu Gomi, Takeshi Yokota. Resistance variable element // Pat. US 8188466. 2012.
21. Jeong D.S., Schroeder H., Breuer U., Waser R. Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere // J. Appl. Phys. – 2008. – Vol. 104. – P. 123716.
22. Conductive bridging RAM (CBRAM) an emerging non-volatile memory technology scalable to sub 20 nm / M. Kund, G. Beitel, C.-U. Pinnow et al. // IEEE International Electron Devices Meeting – 2005. – IEDM Technical Digest. – 2005. – P. 754–757.
23. The mechanism of electroforming of metal oxide memristive switches / J.J. Yang, F. Miao, M.D. Pickett et al. // Nanotechnology. – 2009. – Vol. 20. – P. 215201.
24. Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers / L. Goux, J.D. Lisoni, M. Jurczak et al. // J. Appl. Phys. – 2010. – Vol. 107. – P. 024512.
25. Coexistence of bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells / X. Sun, G. Li, X. Zhang et al. // J. of Physics D: Applied Physics. – 2011. – Vol. 44. – No. 12. – P. 1–5.
26. Yang J.J., Strukov D.B., Stewart D.R. Memristive devices for computing // Nature Nanotechnology. – 2013. – Vol. 8. – P. 13–24.
27. Waser R. Electrochemical and thermochemical memories // IEEE International Electron Devices Meeting–2008. IEEE Press. – 2008. – P. 1–4.
28. Waser R. Alibart F., Gao L., Hoskins B.D., Strukov D.B. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm // Nanotechnology. – 2012. – Vol. 23. – P. 075201.
29. Controllable growth of nanoscale conductive filaments in solid-electrolyts based ReRAM by using a metal nanocrystal covered bottom electrode / Q Liu, S. Long, H. Lv et al. // Acsnano. – 2010. – Vol. 4. – No. 10. – P. 6162–6168.
30. Electrical characterization of solid state ionic memory elements / R. Symanczyk, M. Balakrishnan, C. Gopalan et al. // Proc. of the 2003 Non-Volatile Memory Technology Sympo-sium (San Diego, California, 2003). – 2003. – P. 17–1.
31. Lu W., Jeong D.S., Kozicki M., Waser R. Electrochemical metallization cells-blending nanoionics into nanoelectronics // MRS Bulletin. – 2012. – Vol. 37. – P. 124–130.
32. Observation of conducting filament growth in nanoscale resistive memories / Y. Yang, P. Gao, S. Gaba et al. // Nature communications. – 2012. – Vol. 3. – No. 732. – P. 1–8.
33. Demonstration of conductive bridging random access memory (CBRAM) in logic CMOS process / C. Gopalan, Y. Ma, T. Gallo et al. // Solid-State Electronics. – 2011. – Vol. 58. – P. 54–61.
34. A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program con-trol / S. Dietrich, M. Angerbauer, M. Ivanov et al. // IEEE Journal of Solid-State Circuits. – 2007. – Vol. 42. – No. 4. – P. 839–845.
35. O’Kelly C., Fairfield J.A., Boland J.J. A single nanoscale junction with programmable multilevel memory // ACS Nano. – 2014. – No. 8. – Р. 11724–11729.
36. Kozicki M.N., Park M., Mitkova M. Nanoscale memory elements based on solid-state electrolytes // IEEE Transactions on Nanotechnology. – 2005. – Vol. 4. – No. 3. – P. 31–38.
37. Bruchhaus R., Honal M., Symanczyk R., Kunda M. Selection of optimized materials for CBRAM based on HT-XRD and electrical test results // J. of the Electrochemical Society. – 2009. – Vol. 156. – No. 9. – P. H729–H733.
38. Valov I., Waser R., Jameson J.R., Kozicki M.N. Electrochemical metallization memo-ries—fundamentals, applications, prospects // Nanotechnology. – 2011. – Vol. 22 – Р. 254003–254025.
39. Valov I., Staikov G. Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories // J. Solid State Electrochem. – 2013. – Vol. 17. – Р. 365–371.
40. Kaeriyama S., Sakamoto T., Sunamura H., Mizuno M. A nonvolatile programmable solid-electrolyte nanometer switch // IEEE Journal of Solid-State Circuits. – 2005. – Vol. 40. – No. 1. – P. 168–176.
41. Study of multilevel programming in programmable metallization cell (PMC) memory / U. Russo, D. Kamalanathan, D. Ielmini et al. // IEEE Transactions on Electron Devices. – 2009. – Vol. 56. – No. 5. – Р. 1040–1047.
42. Ma Y., Gallo T., Wang J. Demonstration of conductive bridging Random Access Memory (CBRAM) in Logic CMOS Process // Solid State Electronics. – 2010. – Vol. 58. – No. 1. – P. 54.