Методом теории функционала плотности исследована электронная структура мультиграфена. Определена зависимость усредненного меж-плоскостного расстояния от числа слоев ( n = 2,...,6). Проведен анализ перераспределения заряда и электронной плотности двух- и трехслойного мультиграфенов под действием одноосного сжатия при давлении до 50 ГПа.
Литература
1. Nizkotemperaturnie transportniye svoystva plenok multigrafena, sformirovannih sublima-ciey na poverhnosti SiC / A.A. Lebedev, N.V. Agrinskaya, S.P. Lebedev et al. // Fizika i Tehnika Poluprovodnikov. – 2011. – Vol. 45, N.5. – P. 634–638.
2. Elektricheskiye harakteristiki plenok multigrafena na podlojkah visokoomnogo karbida kremniya / A.A. Lebedev, A. M.m Strel’chuk, D.V. Shamshur et al. // Fizika i Tehnika Po-luprovodnikov. – 2010. – Vol.44, N.10. – P. 1436–1438.
3. Tuchin A.V., Bokova A.M., Bitytskaya L.A., Bormontov E.N. Oscillyacii mejsloevih ras-stoyaniy v multigrafene // Kondensirovannie sredi i mejfaznie granici. – 2014. – Vol. 16, N.1. – P. 79–83.
4. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films / Y. Wu, B. Wang, Y. Ma et al. // Nano Res. – 2010. – Vol. 3, N.9. – P. 661–669.
5. Liu Y., Liu Z., Lew W.S., Wang Q.J. Temperature dependence of the electrical transport properties in few-layer graphene interconnects // Nanoscale Research Letters. – 2013. – Vol. 8:335. – P. 1–7.
6. Direct observation of a widely tunable bandgap in bilayer graphene / Y. Zhang, T. Tang, C. Girit et al. // Nature. – 2009. – Vol. 459. – P. 820–823.
7. Trilayergraphene is a semimetal with a gate-tunable band overlap / M.F. Craciun, S. Rus-so, M. Yamamoto et al. // Nature nanotechnology. – 2009. – Vol. 4. – P. 383–388.
8. McCann E. Asymmetry gap in the electronic band structure of bilayer graphene // Phys. Rev. – 2006. – Vol. 74. – P. 161403(4).
9. Electronic transport properties of few-layer graphene materials / S. Russo, M.F. Craciun, T. Khodkov et al. // Graphene – Synthesis, Characterization, Properties and Applications / Еd. by J.R. Gong. – 2011. – P. 141–160.
10. Imaging mechanical vibrations in suspended graphene sheets / D. Garcia-Sanchez, A.M. Zande, A.S. Paulo et al. // Nanolett. – 2008. – Vol. 8, N.5. – P. 1399–1403.
11. One-step exfoliation synthesis of easily soluble graphite and transparent conducting gra-phene sheets / J.H. Lee, D.W. Shin, V.G. Makotchenko et al. // Adv. Mat. – 2009. – Vol. 21, N43. – P. 4383–4387.
12. Struktura i transportie svoystva nanouglerodnih plenok, poluchennih sublimaciey na poverhnosti 6H-SiC / N.V. Agrinskaya, V.A. Berezovec, V.I. Kozub et al. // Fizika i Tehnika Po-luprovodnikov. – 2013. – Vol. 47, N.2. – P. 267–272.
13. Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries / E.J. Yoo, J. Kim, H.-Sh. Zhou et al. // Nano Lett. – 2008. – Vol. 8, N. 8. – P. 2277–2282.
14. Petrosyan T. K., Babushkin A.N. Baricheskiye zavisimosti elektrosoprotivleniya fuller-ene C60, grafita i kvazigrafena pri komnatnoy temperature // Proc. of 15th Vserossiyskoy mo-lodejnoy konferencii po fizike poluprovodnikov i nanostruktur, poluprovodnikovoy opto- i nano-electronike (Saint-Petersburg, 25–29 nov. 2013). – 2013. – P. 90.
15. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation ef-fects // Phys. Rev. – 1965. – Vol. 140. – P. 1133–1138.
16. Tihomirova G.V., Babushkin A.N. Sravnitelnoe issledovanie provodimosti grafita i full-erena pri visokih davleniyah // Fizika Tverdogo Tela. – 2002. – Vol. 44, N. 4. – P. 618–620.