Recently, in the components of the lithium-ion accumulators (LIA) an anomalously diffusion behavior of ion transport has been discovered. Currently, the microscopic models LIA, consecutively taking into account sub- or superdiffusion and percolation of lithium ions into LIA, are unavailable. The semi-empirical LIA models, using the fractional-order impedances, based on the impedances of fractional order, which are substantiated by the anomalous diffusion of ions in a percolative disordered medium are becoming popular. In the work an assessment of the influence of anomalous diffusion on the impedance spectra within the framework of sub-diffusion generalization of the electrochemical model has been carried out. Using the subdivision equations with the time derivatives of fractional order, the LIA electrochemical model has been modified. Within the framework of this model, using the Fourier transform of fractional differential operators, an equivalent circuit, generalizing popular LIA circuit models has been derived. It has been shown that the slope of a rectilinear low-frequency part of the Nyquist diagram does not always unambiguously determine the subdivision coefficient α and can be both larger and smaller than the slope corresponding to normal diffusion. It has been stipulated that the degradations of the battery properties is associated with a change of the diffusion type in the LIA components.
-
Published in:
Fundamentalnye issledovaniya
-
Bibliography link:
Модель аномальной диффузии для описания импеданса литий-ионного аккумулятора / Р.Т. Сибатов, Е.В. Морозова, Б.М. Костишко и др. // Изв. вузов. Электроника. – 2019. – Т. 24. – № 4. – С. 331–341. DOI: 10.24151/1561-5405-2019-24-4-331-341
1. Osaka T., Momma T., Mukoyama D., Nara H. Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery //Journal of Power Sources. – 2012. – Vol. 205. – P. 483–486.
2. Erol S., Orazem M.E. The influence of anomalous diffusion on the impedance response of LiCoO2| C batteries //Journal of Power Sources. – 2015. – Vol. 293. – P. 57–64.
3. Bisquert J., Compte A. Theory of the electrochemical impedance of anomalous diffusion // Journal of Electroanalytical Chemistry. – 2001. – Vol. 499. – No. 1. – P. 112–120.
4. Anomalous diffusion of water in [BMIM][TFSI] room-temperature ionic liquid / A.L. Rollet, P. Porion, M. Vaultier et al. // The Journal of Physical Chemistry B. – 2007. – Vol. 111. – No. 41. – P. 11888–11891.
5. Weber H.W., Kimmich R. Anomalous segment diffusion in polymers and NMR relaxation spectroscopy // Macromolecules. – 1993. – Vol. 26. – No. 10. – P. 2597–2606.
6. Hayamizu K., Aihara Y., Price W.S. Correlating the NMR self-diffusion and relaxation measurements with ionic conductivity in polymer electrolytes composed of cross-linked poly (ethylene oxide-propylene oxide) doped with LiN (SO2CF3)2 // The Journal of Chemical Physics. – 2000. – Vol. 113. – No. 11. – P. 4785–4793.
7. Uchaikin V.V. Self-similar anomalous diffusion and Levy-stable laws // Physics-Uspekhi. – 2003. – Vol. 46. – No. 8. – P. 821–849.
8. Sibatov R.T., Uchaikin V.V. Fractional and differential kinetics of transfer of a charge in the unregulated semiconductors // Semiconductors. – 2007. – Vol. 41. – No 3. – P. 335–340.
9. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives: theory and applications. – N.Y.–London: Gordon and Breach Science Publishers, 1993. – 976 p.
10. Uchaĭkin V.V., Sibatov R. Fractional kinetics in solids: anomalous charge transport in semiconductors, dielectrics, and nanosystems. – Singapore: World Scientific, 2013. – 276 p.
11. Архинчеев В.Е., Баскин Э.М. Аномальная диффузия и дрейф в гребешковой мо-дели перколяционных кластеров // ЖЭТФ. – 1991. – Т. 100. – №. 1. – C. 292–300.
12. Архинчеев В.Е. Случайные блуждания на иерархических фрактальных (гребешко-вых) структурах // ЖЭТФ. – 1999. – Т. 115. – №. 4. – C. 1285–1296.
13. Newman J.S., Tobias C.W. Theoretical analysis of current distribution in porous elec-trodes // Journal of The Electrochemical Society. – 1962. – Vol. 109. – No. 12. – P. 1183–1191.
14. Meyers J.P., Doyle M., Darling R.M., Newman J. The impedance response of a porous electrode composed of intercalation particles // Journal of The Electrochemical Society. – 2000. – Vol. 147. – No. 8. – P. 2930–2940.
15. Sikha G., White R.E. Analytical expression for the impedance response of an insertion electrode cell // Journal of the Electrochemical Society. – 2007. – Vol. 154. – No. 1. – P. A43–A54.
16. Huang J. Diffusion impedance of electroactive materials, electrolytic solutions and po-rous electrodes: Warburg impedance and beyond // Electrochimica Acta. – 2018. – Vol. 281. – P. 170–188.
17. Li S.E., Wang B., Peng H., Hu X. An electrochemistry-based impedance model for lith-ium-ion batteries // Journal of Power Sources. – 2014. – Vol. 258. – P. 9–18.
18. Jacobsen T., West K. Diffusion impedance in planar, cylindrical and spherical symmetry // Electrochimica acta. – 1995. – Vol. 40. – No. 2. – P. 255–262.