Changes in the urban landscape can be detected using visible and far infrared remote sensing. Thermal imagery is widely used for research and monitoring of natural and anthropogenic objects. Multiple data sources use enhances spatial analysis capabilities. These sources are, for example, MODIS satellite data with moderate spatial resolution and daily surveys, Landsat data collection with medium spatial resolution and survey frequency of about once every 14 days, and high-resolution PlanetScope data with the ability to acquire multiple scenes per day. This paper proposes the methodology for identifying anthropogenic transformations in the urban landscape by land surface temperature. Three categories of changes were identified: no changes, minor changes with a temperature difference of 1-3 ºC and significant changes with a temperature difference of more than 4 ºC. When analyzing areas with maximum temperature changes, it was noted that the dynamics of changes are associated with changes in urban development, namely, with the construction of new microdistricts and shopping centers. A change in surface temperature is also associated with a change in forest landscapes, for example, in places where tree plantations were cut down.
-
Published in:
Informatsionno kommunikatsionnye tekhnologii
-
Bibliography link:
Гостева А.А., Матузко А.К., Якубайлик О.Э. Исследование антропогенных изменений в городском ландшафте по данным инфракрасного диапазона Landsat-8 // Изв. вузов. Электроника. 2021. Т. 26. № 3-4. С. 314–323. DOI: https://doi.org/10.24151/1561-5405-2021-26-3-4-314-323
1. Асмус В.В., Бучнев А.А., Пяткин В.П. Кластерный анализ данных дистанционного зондирования Земли // Автометрия. 2010. Т. 46. № 2. C. 58–66.
2. Laraby K.G., Schott J.R., Raqueno N. Developing a confidence metric for the Landsat land surface temperature product // Proc. SPIE. 2016. Vol. 9840: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII (17 May 2016). P. 98400C. DOI: https://doi.org/10.1117/12.2222582
3. Wan Z., Zhang Y., Zhang Q., Li Z.-L. Quality assessment and validation of the MODIS global land surface temperature // International Journal of Remote Sensing. 2004. Vol. 25 (1). P. 261–274. DOI: https://doi.org/10.1080/0143116031000116417
4. MODIS Land-surface temperature algorithm theoretical basis document (LST ATBD). URL: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf (дата обращения: 26.02.2021).
5. Irons J.R., Rocchio L. History. From the beginning // Landsat Science: [Web] / NASA. 2013. URL: http://landsat.gsfc.nasa.gov/about/history.html (дата обращения: 26.02.2021).
6. Fu P., Weng Q. Consistent land surface temperature data generation from irregularly spaced Landsat imagery // Rem. Sens. of Env. 2016. Vol. 184. P. 175–187. DOI: https://doi.org/10.1016/j.rse.2016.06.019
7. Irons J.R., Dwyer J.L., Barsi J.A. The next Landsat satellite: The Landsat data continuity mission // Rem. Sens. of Env. 2012. Vol. 122. P. 11–21. DOI: https://doi.org/10.1016/j.rse.2011.08.026
8. Satellite imagery gallery // Planet: [Web]. URL: https://www.planet.com/products/explorer/ (дата обращения: 26.02.2021).
9. Gosteva A.A., Matuzko A.K., Yakubailik O.E. Detection of changes in urban environment based on infrared satellite data // IOP Conference Series: Materials Science and Engineering. 2019. Vol. 537. Iss. 6. P. 062051. DOI: https://doi.org/10.1088/1757-899X/537/6/062051
10. Congedo L. Semi-automatic classification plugin documentation. Release 6.0.1.1. 2016. DOI: http://dx.doi. org/10.13140/RG.2.2.29474.02242/1
11. Зубкова К.И., Куревлева Т.Г., Пермитина Л.И. Оценка погрешности расчета NDVI при использовании эмпирических методов учета влияния атмосферы // Ракетно-космическое приборостроение и информационные системы. 2016. Т. 3. № 2. С. 24–30.
12. Barsi J.A., Schott J.R., Palluconi F.D., Hook S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments // Proc. SPIE. 2005. Vol. 5882: Earth Observing Systems X (22 August 2005). P. 58820E. DOI: https://doi.org/10.1117/12.619990
13. Effat H.A., Hassan O.A.K. Change detection of urban heat islands and some related parameters using multi-temporal Landsat images; a case study for Cairo city, Egypt // Urban Climate. 2014. Vol. 10 (1). P. 171–188. DOI: https://doi.org/10.1016/j.uclim.2014.10.011