Допирование графеновых нанолент различными химическими элементами приводит к изменению их зонной структуры, что значительно расширяет спектр применения данных объектов в современных электронных устройствах. В настоящей работе исследованы графеновые наноленты с краем типа «кресло» и «зигзаг» с различной концентрацией пирролоподобного азота на краях. Методом функционала плотности в приближении сильной связи с применением самосогласованного заряда (Self-Consistent Charge Density Functional Tight-Binding, SCC-DFTB) установлены наиболее выгодные с энергетической точки зрения конфигурации пирролоподобного азота на каждом из краев графеновых нанолент. Определена зависимость между энергетическими щелями графеновых нанолент и содержанием в них функциональных азотосодержащих групп. Расчеты показали, что, встраиваясь в атомную решетку, пирролоподобный азот на краю графеновой наноленты типа «зигзаг» передает большее количество заряда находящимся рядом атомам углерода, что делает такие наноленты более химически активными по сравнению с графеновыми нанолентами с краем типа «кресло». Графеновые наноленты с краем типа «зигзаг», допированные азотом, могут являться перспективным хеморезистивным элементом наносенсоров, однако данные выводы требуют дальнейших расчетов.
Шунаев Владислав Викторович
Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского, г. Саратов, Россия
Герасименко Александр Юрьевич
Национальный исследовательский университет «МИЭТ», г. Москва, Россия; Первый Московский государственный медицинский университет имени И.М. Сеченова, г. Москва, Россия
Глухова Ольга Евгеньевна
Первый Московский государственный медицинский университет имени И. М. Сеченова Минздрава России, г. Москва, Россия; Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, г. Саратов, Россия
1. Electric field effect in atomically thin carbon films / K.S. Novoselov, A.K. Geim, S.V. Morozov et al. // Science. 2004. Vol. 306. Iss. 5696. P. 666–669. DOI: https://doi.org/10.1126/science.1102896
2. Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene // Science. 2008. Vol. 321. Iss. 5887. P. 385–388. DOI: https://doi.org/10.1126/ science.1157996
3. Szczęśniak B., Choma J., Jaroniec M. Gas adsorption properties of graphene-based ma-terials // Advances in Colloid and Interface Science. 2017. Vol. 243. P. 46–59. DOI: https://doi.org/10.1016/ j.cis.2017.03.007
4. Wen H., Guo B., Kang W., Zhang C. Free-standing nitrogen-doped graphene paper for li-thium storage application // RSC Advances. 2018. Vol. 8. Iss. 25. P. 14032–14039. DOI: https://doi.org/10.1039/C8RA01019F
5. A highly nitrogen-doped porous graphene – an anode material for lithium ion batteries / Z.-Y. Sui, C. Wang, Q.-S. Yang et al. // Journal of Materials Chemistry A. 2015. Vol. 3. Iss. 35. P. 18229–18237. DOI: https://doi.org/10.1039/C5TA05759K
6. Elessawy N.A., El Nady J., Wazeer W., Kashyout A.B. Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D nitrogen doped graphene // Sci. Rep. 2019. Vol. 9. Art. No. 1129. DOI: https://doi.org/10.1038/s41598-018-37369-x
7. Lei H., Tu J., Tian D., Jiao S. A nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors // New Journal of Chemistry. 2018. Vol. 42. Iss. 19. P. 15684–15691. DOI: https://doi.org/10.1039/C8NJ02170H
8. N-doped graphene field-effect transistors with enhanced electron mobility and air stability / W. Xu, T.-S. Lim, H.-K. Seo et al. // Small. 2014. Vol. 10 (10). P. 1999–2005. DOI: https://doi.org/ 10.1002/smll.201303768
9. Foroughi F., Rahsepar M., Kim H. A highly sensitive and selective biosensor based on nitrogen-doped graphene for non-enzymatic detection of uric acid and dopamine at biological pH value // Journal of Electroanalytical Chemistry. 2018. Vol. 827. P. 34–41. DOI: https://doi.org/10.1016/j.jelechem.2018.09.008
10. Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and in-fluence of nitrogen impurities on carrier transport / Y.-F. Lu, S.-T. Lo, J.-C. Lin et al. // ACS Nano. 2013. Vol. 7. No. 8. P. 6522–6532. DOI: https://doi.org/10.1021/nn402102y
11. Qu L., Liu Y., Baek J.-B., Dai L. Nitrogen-doped graphene as efficient metal-free elec-trocatalyst for oxygen reduction in fuel cells // ACS Nano. 2010. Vol. 4. No. 3. P. 1321–1326. DOI: https://doi.org/ 10.1021/nn901850u
12. Nitrogen-doped graphene: efficient growth, structure, and electronic properties / D. Usachov, O. Vilkov, A. Grüneis et al. // Nano Lett. 2011. Vol. 11. No. 12. P. 5401–5407. DOI: https://doi.org/10.1021/nl2031037
13. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers / Z. Li, X. Li, Y. Zong et al. // Carbon. 2017. Vol. 115. P. 493–502. DOI: https://doi.org/10.1016/j.carbon.2017.01.036
14. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging / Q. Liu, B. Guo, Z. Rao et al. // Nano Lett. 2013. Vol. 13. No. 6. P. 2436−2441. DOI: https://doi.org/10.1021/nl400368v
15. Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications / B. Quan, S.-H. Yu, D.Y. Chung et al. // Sci. Rep. 2014. Vol. 4. Art. No. 5639. DOI: https://doi.org/10.1038/srep05639
16. Nitrogen-doping processes of graphene by a versatile plasma-based method / Y. P. Lin, Y. Ksari, J. Prakash et al. // Carbon. 2014. Vol. 73. P. 216–224. DOI: https://doi.org/10.1016/j.carbon.2014.02.057
17. Zeng J.J., Lin Y.J. Tuning the work function of graphene by nitrogen plasma treatment with different radio-frequency powers // Appl. Phys. Lett. 2014. Vol. 104. Iss. 23. Art. ID: 233103. DOI: https://doi.org/ 10.1063/1.4882159
18. Aminated graphene for DNA attachment produced via plasma functionalization / M. Baraket, R. Stine, W.K. Lee et al. // Appl. Phys. Lett. 2012. Vol. 100. Iss. 23. Art. ID: 233123. DOI: https://doi.org/10.1063/1.4711771
19. Unveiling a facile approach for large-scale synthesis of N-doped graphene with tuned electrical properties / M.K. Rabchinskii, S.A. Ryzhkov, M.V. Gudkov et al. // 2D Materials. 2020. Vol. 7. No. 4. Art. ID: 045001. DOI: https://doi.org/10.1088/2053-1583/ab9695
20. Nath P., Chowdhury S., Sanyal D., Jana D. Ab-initio calculation of electronic and opti-cal properties of nitrogen and boron doped graphene nanosheet // Carbon. 2014. Vol. 73. P. 275–282. DOI: https://doi.org/ 10.1016/j.carbon.2014.02.064
21. Herath D., Dinadayalane T. Computational investigation of double nitrogen doping // J. Mol. Model. 2018. Vol. 24. Art. No. 26. DOI: https://doi.org/10.1007/s00894-017-3560-0
22. Al-Aqtash N., Vasiliev I. Ab initio study of boron- and nitrogen-doped graphene and carbon nanotubes functionalized with carboxyl groups // J. Phys. Chem. C. 2011. Vol. 115. Iss. 38. P. 18500–18510. DOI: https://doi.org/10.1021/jp206196k
23. Moon S., Hijikata Y., Irle S. Structural transformations of graphene exposed to nitrogen plasma: quantum chemical molecular dynamics simulations // Phys. Chem. Chem. Phys. 2019. Vol. 21. P. 12112–12120. DOI: https://doi.org/10.1039/C8CP06159A
24. Dong Y., Gahl M.T., Zhang C., Lin J. Computational study of precision nitrogen dop-ing on graphene nanoribbon edges // Nanotechnology. 2017. Vol. 28. No. 50. Art. ID: 505602. DOI: https://doi.org/10.1088/ 1361-6528/aa9727
25. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts / D. Guo, R. Shibuya, C. Akiba et al. // Science. 2016. Vol. 351. Iss. 6271. P. 361–365. DOI: https://doi.org/10.1126/science.aad0832
26. Liu Y., Zhao J., Cai Q. Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a compu-tational study // Phys. Chem. Chem. Phys. 2016. Vol. 18 (7). P. 5491–5498. DOI: https://doi.org/10.1039/C5CP07458D
27. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of ni-trogen-doped sites at basal planes / H.M. Jeong, J.W. Lee, W.H. Shin et al. // Nano Lett. 2011. Vol. 11. No. 6. P. 2472–2477. DOI: https://doi.org/10.1021/nl2009058
28. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudoca-pacitance / K. Tian, J. Wang, L. Cao et al. // Nature Communications. 2020. Vol. 11. Art. No. 3884. DOI: https://doi.org/ 10.1038/s41467-020-17727-y
29. Self-consistent-charge density-functional tight-binding method for simulations of com-plex materials properties / M. Elstner, D. Porezag, G. Jungnickel et al. // Phys. Rev. B. 1998. Vol. 58. P. 7260–7268. DOI: https://doi.org/10.1103/PhysRevB.58.7260
30. Parr R.G., Pearson R.G. Absolute hardness: companion parameter to absolute electro-negativity // J. Am. Chem. Soc. 1983. Vol. 105. No. 26. P. 7512–7516. DOI: https://doi.org/10.1021/ja00364a005
31. Gaus M., Goez A., Elstner M. Parametrization and benchmark of DFTB3 for organic molecules // J. Chem. Theory Comput. 2013. Vol. 9. No. 1. P. 338–354. DOI: https://doi.org/10.1021/ct300849w
32. Investigation of edge-selectively nitrogen-doped metal free graphene for oxygen reduc-tion reaction / H. He, Q. Yang, S. Xiao et al. // Journal of Advances in Nanotechnology. 2020. Vol. 1. Iss. 2. P. 5–13.
33. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis / Z.-H. Sheng, L. Shao, J. J. Chen et al. // ACS Nano. 2011. Vol. 5. No. 6. P. 4350–4358. DOI: https://doi.org/10.1021/nn103584t
34. Barone V., Hod O., Scuseria G.E. Electronic structure and stability of semiconducting graphene nanoribbons // Nano Lett. 2006. Vol. 6. No. 12. P. 2748–2754. DOI: https://doi.org/10.1021/nl0617033
35. Lemes G., Sebastián D., Pastor E., Lázaro M.J. N-doped graphene catalysts with high nitrogen concentration for the oxygen reduction reaction // Journal of Power Sources. 2019. Vol. 438. Art. ID: 227036. DOI: https://doi.org/10.1016/j.jpowsour.2019.227036