In recent times, plasmonic effects are widely used to cover the different application purposes. Due to plasmonic effects the nanoparticles enhance some phenomena, such as Raman scattering, photocatalysis, and photogeneration. The understanding of nanoparticles and nanoalloys formation features makes it possible to obtain their specific composition and structure. In this work, several features of the Ag, Au nanoparticles and Ag-Cu, Au-Cu, Cu-Rh binary nanoalloys formation by thermal evaporation, condensation and heating on an inert surface in vacuum are shown. It is found by atomic force microscope investigation that rapid changes in the initial Ag array take place at a low temperature of 75–100 °C, and after the array enters a metastable state. It was found that the impact of the electron beam of a transmission electron microscope on the initial condensate leads to the migration of nanoparticles and their fusion despite their crystalline state. The difference in the formation of Ag-Cu, Au-Cu and Cu-Rh nanoalloys is demonstrated. The phase formation deviation from phase equilibrium diagram of bulk materials, associated with the size effect, is also demonstrated. It has been established that the considered features of the nanoparticles and nanoalloys formation are associated with the size effect of melting-point depression and existence of liquid layer of a certain thickness on the solid phase surface, which is in equilibrium with the solid phase.
-
Ключевые слова:
nanoparticle, nanoalloy, melting, coalescence, gold, silver, copper, thermal evaporation
-
Информация о финансировании:
the work has been supported by the Russian Science Foundation (project No. 21-19-00761). Acknowledgments: the work has been carried out using equipment and with the assistance of specialists from Center for collective use “Diagnostics and Modification of Microstructures and Nanoobjects” (National Research University of Electronic Technology), Center for collective use of Scientific Research Institute of Physical Problems named after F. V. Lukin, and Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences.
-
Опубликовано в разделе:
Технологические процессы и маршруты
-
Для цитирования:
Gromov D. G., Dubkov S. V., Savitskiy A. I., Gavrilov S. A. Features of the nanoparticles and binary nanoalloys formation during thermal evaporation and condensation on an inert surface in vacuum. Proc. Univ. Electronics, 2023, vol. 28, no. 1, pp. 49–58. https://doi.org/10.24151/1561-5405-2023-28-1-49-58
Громов Дмитрий Геннадьевич
Национальный исследовательский университет «МИЭТ», г. Москва, Россия; Первый Московский государственный медицинский университет имени И. М. Сеченова Минздрава России, г. Москва, Россия
Савицкий Андрей Иванович
Национальный исследовательский университет «МИЭТ», г. Москва, Россия; НПК «Технологический центр», г. Москва, Россия
1. Erathodiyil N., Ying J. Y. Functionalization of inorganic nanoparticles for bioimaging ap-plications. Acc. Chem. Res., 2011, vol. 44, no. 10, pp. 925–935. https://doi.org/10.1021/ar2000327
2. Klębowski B., Depciuch J., Parlińska-Wojtan M., Baran J. Applications of noble metal-based nanoparticles in medicine. Int. J. Mol. Sci., 2018, vol. 19 (12), art. no. 4031. https://doi.org/10.3390/ijms19124031
3. Liu L., Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoc-lusters and nanoparticles. Chem. Rev., 2018, vol. 118, no. 10, pp. 4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776
4. Chang G., Cai Z., Jia H., Zhang Z., Liu X., Liu Z., Zhu R., He Y. High electrocatalytic performance of a graphene-supported PtAu nanoalloy for methanol oxidation. International Journal of Hydrogen Energy, 2018, vol. 43, no. 28, pp. 12803–12810. https://doi.org/10.1016/j.ijhydene.2018.04.116
5. Zeng S., Baillargeat D., Ho H.-P., Yong K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev., 2014, vol. 43, iss. 10, pp. 3426–3452. https://doi.org/10.1039/C3CS60479A
6. Zhou Q., Xu L., Umar A., Chen W., Kumar R. Pt nanoparticles decorated SnO2 nano-needles for efficient CO gas sensing applications. Sensors and Actuators B: Chemical, 2018, vol. 256, pp. 656–664. https://doi.org/10.1016/j.snb.2017.09.206
7. Liu K., Bai Y., Zhang L., Yang Z., Fan Q., Zheng H., Yin Y., Gao C. Porous Au–Ag na-nospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett., 2016, vol. 16, no. 6, pp. 3675–3681. https://doi.org/10.1021/acs.nanolett.6b00868
8. Sonnefraud Y., Leen Koh A., McComb D. W., Maier S. A. Nanoplasmonics: Engineering and observation of localized plasmon modes. Laser and Photon. Rev., 2012, vol. 6, pp. 277–295. https://doi.org/10.1002/lpor.201100027
9. Willets K. A., Duyne R. P. van. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, vol. 58, pp. 267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607
10. Mayer K. M., Hafner J. H. Localized surface plasmon resonance sensors. Chem. Rev., 2011, vol. 111, no. 6, pp. 3828–3857. https://doi.org/10.1021/cr100313v
11. Pillai S., Catchpole K. R., Trupke T., Green M. A. Surface plasmon enhanced silicon so-lar cells. Journal of Applied Physics, 2007, vol. 101, iss. 9, art. no. 093105. https://doi.org/10.1063/1.2734885
12. Shamjid P., Abhijith T., Vivek P., Joel C. S., Reddy V. S. Plasmonic effects of Ag nano-particles for absorption enhancement in polymer solar cells with MoO3 passivation layer. Physi-ca B: Condensed Matter, 2019, vol. 560, pp. 174–184. https://doi.org/10.1016/j.physb.2019.01.052
13. Fang M., Tan X., Liu Z., Hu B., Wang X. Recent progress on metal-enhanced photocata-lysis: a review on the mechanism. Research, 2021, vol. 2021, art. ID: 9794329. https://doi.org/10.34133/2021/9794329
14. Bingham M., Mills A. Photonic efficiency and selectivity study of M (M = Pt, Pd, Au and Ag)/TiO2 photocatalysts for methanol reforming in the gas phase. Journal of Photochemistry and Photobiology A: Chemistry, 2020, vol. 389, art. no. 112257. https://doi.org/10.1016/j.jphotochem.2019.112257
15. Liao T.-W., Verbruggen S. W., Claes N., Yadav A., Grandjean D., Bals S., Lievens P. TiO2 films modified with Au nanoclusters as self-cleaning surfaces under visible light. Nanoma-terials, 2018, vol. 8 (1), art. no. 30. https://doi.org/10.3390/nano8010030
16. Purwidyantri A., Hsu C.-H., Yang C.-M., Prabowo B. A., Tian Y.-C., Lai C.-S. Plas-monic nanomaterial structuring for SERS enhancement. RSC Adv., 2019, iss. 9, pp. 4982–4992. https://doi.org/10.1039/C8RA10656H
17. Gromov D. G., Dubkov S. V., Savitskiy A. I., Shaman Yu. P., Polokhin A. A., Belogo-rokhov I. A., Trifonov A. Yu. Optimization of nanostructures based on Au, Ag, Au–Ag nanopar-ticles formed by thermal evaporation in vacuum for SERS applications. Applied Surface Science, 2019, vol. 489, pp. 701–707. https://doi.org/10.1016/j.apsusc.2019.05.286
18. Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys., 1985, vol. 57, iss. 3, pp. 783–826. https://doi.org/10.1103/RevModPhys.57.783
19. Bandarenka H. V., Girel K. V., Zavatski S. A., Panarin A., Terekhov S. N. Progress in the development of SERS-active substrates based on metal-coated porous silicon. Materials, 2018, vol. 11 (5), art. no. 852. https://doi.org/10.3390/ma11050852
20. Gromov D. G., Pavlova L. M., Savitsky A. I., Trifonov A. Yu. Nucleation and growth of Ag nanoparticles on amorphous carbon surface from vapor phase formed by vacuum evaporation. Appl. Phys. A, 2015, vol. 118, iss. 4, pp. 1297–1303. https://doi.org/10.1007/s00339-014-8834-0
21. Gromov D. G., Pavlova L. M., Savitskii A. I., Trifonov A. Yu. Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evapora-tion under vacuum. Phys. Solid State, 2015, vol. 57, pp. 173–180. https://doi.org/10.1134/S1063783415010126
22. Gromov D. G., Dubkov S. V., Eritsyan G. S., Savitsky A. I., Bykov V. A., Bo-brov Yu. A. Thermal stabilization of the geometric parameters of an array of silver nanoparticles obtained by vacuum-thermal evaporation on an unheated substrate. Russ. Microelectron., 2020, vol. 49, iss. 7, pp. 485–488. https://doi.org/10.1134/S1063739720070033
23. Dubkov S., Gromov D., Savitskiy A., Trifonov A., Gavrilov S. Alloying effects at bi-component Au-Cu and In-Sn particle arrays formation by vacuum-thermal evaporation. Materials Research Bulletin, 2019, vol. 112, pp. 438–444. https://doi.org/10.1016/j.materresbull.2018.10.003
24. Sorokina L., Savitskiy A., Shtyka O., Maniecki T., Szynkowska-Jozwik M., Trifonov A., Pershina E., Mikhaylov I., Dubkov S., Gromov D. Formation of Cu-Rh alloy nanoislands on TiO2 for photoreduction of carbon dioxide. Journal of Alloys and Compounds, 2022, vol. 904, art. no. 164012. https://doi.org/10.1016/j.jallcom.2022.164012
25. Priya S., Jacob K. T. Activities and immiscibility in the system Cu-Rh. JPE, 2000, vol. 21, iss. 4, art. no. 342. https://doi.org/10.1361/105497100770339860
26. Dubkov S. V., Savitskiy A. I., Trifonov A. Yu., Yeritsyan G. S., Shaman Yu. P., Kit-syuk E. P., Tarasov A., Shtyka O., Ciesielski R., Gromov D. G. SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation. Optical Materials: X, 2020, vol. 7, art. no. 100055. https://doi.org/10.1016/j.omx.2020.100055
27. Buffat Ph., Borel J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A, 1976, vol. 13, iss. 6, pp. 2287–2298. https://doi.org/10.1103/PhysRevA.13.2287
28. Gromov D. G., Gavrilov S. A. Heterogeneous melting in low-dimensional systems and accompanying surface effects. Thermodynamics – Physical Chemistry of Aqueous Systems, ed. J. C. Moreno-Piraján. London, InTechOpen, 2011, pp. 157–190. https://doi.org/10.5772/21429